Complexity in relationships between antioxidants and individual
life-history parameters in a seabird and a songbird
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Selection on physiological traits is thought to mediate the evolution of individual life-history parameters like
reproduction, longevity, and the tradeoffs between them, but almost nothing is known about the relationships between
physiological and life-history parameters in the wild. Antioxidants are strong candidates to correlate with life histories
because they play a critical role in preventing free radical damage to macromolecules, and many types are involved in
sexual signaling and embryo provisioning. Here for the first time we present data on associations between serum
antioxidant measures (antioxidant capacity and concentrations of uric acid, vitamin E and carotenoids) and indices of
reproductive rate and age in two bird species. After controlling for age, 36% of the variation in hatching rate in Leach’s
storm-petrels _ ceanod oma lesco hoa Was accounted for by a negative association with antioxidant capacity. Age was
negatively asscgglated with uric acid levels. Savannah Sparrows Y age culm sand wchengs showed no association between
antioxidant capacity and fledging rate, but serum B-carotene levels were weakly positively associated with fledging rate.
Because antioxidant levels are known to vary markedly within individuals over time, detection of associations between
long-term measures of reproduction and instantaneous antioxidant levels suggests strong (though not necessarily causal)
relationships. Relationships between antioxidants and life histories appeared to differ in sparrows and storm-petrels
though, likely due to variation in diet, ecology, and life-history evolution in these distantly related species.

Evolutionary ecologists have long had an interest in under-
standing the tradeoffs between reproduction and longevity,
i.e. current versus future reproduction (Williams 1957,
Stearns 1992). Although some studies have investigated the
role of hormones in regulating behavior that affects these
tradeoffs, very little is known about more direct physiolo-
gical causes and consequences of the tradeoffs (Ketterson
et al. 1996, Ricklefs and Wikelski 2002). Why does
reproductive effort incur physiological costs, and would
understanding these mechanisms help explain why some
species appear to be more likely than others to increase



toward understanding whether and how oxidative balance
may help mediate life-history tradeoffs.

Physiological systems are complex, and antioxidants are
an imperfect measure of oxidative balance. Much of the
important variation may be due to regulation of the rate of
free radical production, although it appears that antiox-
idants may respond to need, such that high levels indicate
greater oxidative stress (Lopez-Torres et al. 1993, Brand
2000). Antioxidant systems also vary greatly across tissues
and across species. In many tissues, and primarily in
mitochondria, antioxidant enzymes are the key defense
against oxidative damage (Barja 2004). In circulating
systems (measured in this study), micromolecular antiox-
idants such as uric acid, vitamins C and E, and carotenoids
play a more important role (Miller et al. 1993). Antioxidant
enzymes, which have a specialized function, are likely
regulated to adjust antioxidant protection specifically,
whereas micromolecular antioxidant levels depend on diet-
ary intake and on their other physiological roles such as
signaling. Additionally, the diverse roles of micromolecular
antioxidants mean that different trends might be seen for
different types of antioxidants. In particular, carotenoids are
important in sexual signaling and immune function,
making it possible that carotenoids would correlate posi-
tively with reproductive rate even while other types of
antioxidants might correlate negatively, particularly if
reproductive rates reflect quality and high antioxidant levels
reflect high oxidative stress (Bortolotti et al. 2003, McGraw
2006). Across species, variation in diet and in other aspects
of physiology mean that antioxidants may vary for reasons
unrelated to life-history tradeoffs (Tella et al. 2004).

We assessed the relationship between circulating anti-
oxidant concentrations and age and reproductive rate in two
species that have been studied at the same site for many
years: Leach’s storm-petrel



taken within 3 min of capture to avoid effects of the
hypothalamo-pituiary-axis-activated stress response on anti-
oxidant concentrations (Cohen et al. 2008a). Trolox-
equivalent antioxidant capacity (TEAC) of serum and uric
acid were measured using spectrophotometric methods
following Cohen et al. (2007). Vitmain E and carotenoids
were measured using HPLC following previously published
methods (McGraw and Parker 2006). Details of these
methods can be found in the Supplementary material
Appendix 1.

Measures of reproductive rate, age and body size

In both study species, reproduction is higher in older birds;
in the petrels this is apparently due to higher mortality of
low-quality individuals at young ages (Wheelwright and
Schultz 1994, Mauck et al. 2004). However, in many
species there is also evidence for a tradeoff between
reproduction and survival, or old individuals may be
senescent (Daan et al. 1996). The positive association
between reproduction and age in our species allows us to
use a measure of reproduction — average annual offspring
production, up to current age, or ‘reproductive rate’ — that
would be confounded by a tradeoff or by strong effects of
senescence in other species. We could not use lifetime
reproductive success, which includes all offspring produced
in a lifetime, because most of our individuals were not near
the end of their lifespans. Because we did not have data on
fledging for many Leach’s storm-petrels, we used the
percentage of all eggs that hatched up to present during



these data were always separated for analysis. One night-
caught bird was an outlier with high TEAC (4.16,
=mean+6.2 SD) and low Res (—1.19, =mean —8.7 SD)
and was excluded from all analyses of these variables. (These
standard deviations were calculated excluding the outlier. If
it is included, they become 2.9 and 3.2 SDs from the mean
respectively.) Only two carotenoids, lutein and zeaxanthin,
were detected in Leach’s storm-petrels. All measures of
antioxidants except possibly lutein differed markedly
between day and night, with much higher values at night
(Table Al). Day- and night-caught birds did not differ in
body size. Correlations among antioxidants are shown in



carotenoids, B-carotene would be the one associated with
individual life-history parameters. It is an important vitamin
A precursor and tends to be limiting in the xanthophyll-rich
diets of granivores (Goodwin 1980, 1984). B-carotene is
present in Savannah sparrows at much lower levels than any
of the other carotenoids, consistent with a limiting role in



If associations between antioxidants and reproductive rate
are generally dependent on life history strategy, long-lived
species may have higher reproduction when overall anti-
oxidant levels are low. In contrast, in shorter lived species,
many of which have carotenoid-rich diets, reproductive rate



physiology evolves to rely on it, and it may eventually be
incorporated into sexually selected signals. Conversely,
foraging habits may also evolve in response to physiological
need. In addition to the interplay between diet and
physiology, there should be selection in response to trade-
offs (along the r—K continuum, for example). But because
of the diverse ways that the diet can interact with multiple
physiological alternatives, the consequences of this selection
on physiological systems (and thereby on antioxidant levels)
could vary widely across taxa. A proper understanding of
these issues will require much further study, in particular a
combination of experimental and comparative approaches
tailored to elucidate causes and consequences of variation in
antioxidant levels or other aspects of physiology, and how
these associations vary across species.

The Supplementary material Appendix 1 contains
additional discussion of antioxidant differences by time-
of-day in petrels and depending on breeding status in
sparrows.
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