Evidence for quantization of the transition state for cis-trans isomerization

Young S. Choi and Taek-Soo Kim Department of Chemistry, Inha University, Nam-gu, Incheon 402-751, Republic of Korea

Hrvoje Petek^{a)} and Keitaro Yoshihara Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Pareld Christen

(Received 14 March 1994; accepted 14 April 1994)

Cis-trans isomerization rates of trans, trans-1,3,5,7-octate trans (OT) on the first excited singlet $\frac{1}{14}$ patential surface have been about the first excited singlet

the nuclescence methods. A stepwise increase in the isomerization rate with increasing energy has

steps tentatively is assigned to an in-plane bending vibration of the transition state.

	Unimolecular reactions are an important type of elemen- tary chemical reaction, in which an energized molecule dis-	frequency doubled with a KDP crystal using an autotrack- ing system. The laser beam crosses the supersonic jet at 15
- X	theoretical studies have been devoted to understanding this	the $\Sigma \in \Sigma(2^{-1}A_{-1}, 1^{-1}A_{-1})$ transition state of OT Element
	quently employed theory of unimolecular reactions is that formulated by Rice, Ramsperger, Kassel, and Marcus (RRKM). ⁴ The so-called RRKM theory is based upon sev-	quartz lens, filtered with a color filter and an aperture, and then detected with a fast-response photomultiplier tube (PMT) (Hamamatsu H3284) with about a 300 ps risetime
p -	the reactant from products and that the rate is given by the flux through vibrational levels of the transition state. Despite the frequent use of this theory experimental oridenes for	digital oscilloscope. Each decay curve is averaged for 500 or 1000 decay profiles and stored for further analysis. At a given vibronic energy, measurements were repeated three times an different doub to minimize curtometic.
		eat res were autorented to a personal computer and it with a
	on the triplot surface 5,6 More recently Wittin and ac	time marchetica hai 1' 's har at 1 at 1 at 6
		• • • • • • • • •
<u>ع</u> د و 	inese recent observations suggest the general existence	thesized by dehydration of 2,4,8-octatrien-6-ol using pyri-
× • • • • • • • • • • • • • • • • • • •		
	recetions In this Communication with the Content of the	
	reaction The sis turns isometication / from the	
	(S_1) potential energy surface is observed to increase in a stepwise manner with increasing energy as expected for quantized vibrational levels of the transition state.	shown. The decay rate increases very slowly from the origin of the S_1 state up to 2130 cm ⁻¹ . The data of curve (a) be- tween 2070 and 2130 cm ⁻¹ shown in Fig. 1 are on the line of
-	on the vibronic energy. The experimental setup in this work	constant up to an energy of 2190 cm^{-1} where it increases
	valve with a 0.5 mm nozzle diameter. The output from	edge of the photochemistry and photophysics of the S. state
, <u> </u>		

	$\begin{array}{c} 25 \\ (a) \\ (b) \\ (c) \\ $	perimental rate constants were averaged to yield one value at a given vibrational energy and plotted as curve (b) in Fig. 1. The rate constant suddenly increases from 0 to $\sim 1.0 \times 10^7$ s ⁻¹ within a 10 cm ⁻¹ range around 2140 cm ⁻¹ . The rate constant then stays nearly constant until the 2220 cm ⁻¹ re- gion where a second step shows up. The spacing between these two steps is 80 ± 10 cm ⁻¹ . The first step corresponds to
·		issuesting on the place. The shares of the stop of
1.	se 5 – (b) – 5	gives 2137 ± 3 cm for isometization of O1 on the 3_1 surface.
,	0	dicted by RRKM theory. According to the theory, the unimo- lecular rate constant $k(E)$ of molecules with vibrational en- ergy E is given by Eq. (1), ¹⁻³
		$k(E) = W^{\ddagger}(E - E_{0})/h\rho(E) $ (1)
	for the procedure of calculation) in the same vibrational energy range as for	tional states, and <i>n</i> is Planck's constant. Usually $\rho(E)$ is
· · · · · · · · · · · · · · · · · · ·	vides the basis for understanding the photochemistry of natu-	energies below the threshold. It equals one at the threshold,
- 1	cesses such as vision and bacterial and plant	at the second excited vibrational level, and so on. Thus, $k(E)$
s.	experimentary and medicularly. Below the uncontrol t_1 is a property of the ground plantenia	W [‡] $(E - E)$ increases. The stepwise-characteristics are most
ì \ <u>-</u>	and spontaneous emission. When the molecule is prepared	tween vibrational levels in the transition state are the largest.
	tion, this photochemical process also contributes to S_1 decay.	spacings between levels become increasingly smaller and the
- <u>-</u>	state without emitting fluorescence. Very similar behavior has been observed for <i>trans</i> -stilbene. ¹⁸⁻²⁰ Thus, opening the	increase of $\rho(E)$. Since $W^{*}(E-E_{0})$, which gives a stepwise increase of RRKM rate constant with energy, is based on the implicit accumption that the vibrational levels of transition
	as a function of energy, since the rate of isomerization in-	tization of the transition state. The isomerization rate of OT
	channels, internal conversion, and fluorescence.	theory; it increases in a stepwise manner with increasing en-
:	TOTAL TOTAL AND THE TRANSPORTED AND THE TRANSPORTED AND THE TRANSPORTED AND THE TRANSPORTED AND THE TOTAL AND TOTAL AN	The position of the steps corresponds to viorational tev-
,	radiative decay, internal conversion, and isomerization; i.e., $k_{\text{total}}(E) = 1/\tau_r + k_{\text{ic}}(E) + k_{\text{iso}}(E)$. Petek <i>et al.</i> have reported	first two steps, 80 ± 10 cm ⁻¹ , is the lowest frequency vibra- tion of the transition state. Since OT is a relatively large
	rate of the nonreactive decays is a weak function of energy, data points for decay rates below 2000 cm ⁻¹ were fit to a linear function of energy. The isomerization rate $[k_{iso}(E)]$ is obtained by subtracting the calculated contribution of radia	which are perpendicular to the reaction coordinate of tor- sional motion, should be similar to those of the transition state. Based upon this optimistic expectation, the lowest fre- quency vibration of the transition state is tentatively assigned of 76 cm ⁻¹ in OT in the S_1 state. ⁸ A lower frequency vibra-
	total experimentary second accupitate, w _{total} (2). Theo ox	

J. Chem. Phys., Vol. 100, No. 12, 15 June 1994

Downloaded 30 Jan 2004 to 137.99.123.42. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

.

	tion at $\sim 49 \text{ cm}^{-1}$ is probably the reaction coordinate (tor-	¹ P. J. Robinson and K. A. Holbrook, <i>Unimolecular Reactions</i> (Wiley, London, 1972)
š .		
·	agreement with the experimental value of $8.0 \times 10^{\circ}$ s at the same energy, considering the fact that the vibrational frequencies of approximately half of the vibrational modes are used by arbitrarily decreasing the <i>ab initio</i> values ²³ by 10%.	 ³R. G. Gilbert and S. C. Smith, <i>Theory of Unimolecular and Recombina-</i> <i>tion Reactions</i> (Blackwell Scientific, Boston, 1990). ⁴R. A. Marcus and O. K. Rice, J. Phys. Colloid. Chem. 55, 894 (1951); R. A. Marcus, J. Chem. Phys. 20, 359 (1952). ⁵E. R. Lovejoy, S. K. Kim, and C. B. Moore, Science 256, 1541 (1992).
8	strated the quantization of the transition state for unimolecu- lar bond-breaking reactions. The present work involves an isomerization in which a bound molecule rearranges into an- other stable geometry. Our results not only provide addi-	 ⁷G. A. Brucker, S. I. Ionov, Y. Chen, and C. Wittig, Chem. Phys. Lett. 194, 301 (1992); S. I. Ionov, G. A. Brucker, C. Jaques, Y. Chen, and C. Wittig, J. Chem. Phys. 99, 3420 (1993).
·	tional evidence for quantization of the transition state but	Obsishered I Obse Dkus 00-2772 (1003)
	observed in a molecule with 48 degrees of freedom. Other large molecules might reveal similar effects. Extensive col-	 ¹⁰H. Petek, A. J. Bell, K. Yoshihara, and R. L. Christensen, SPIE Proc. 1638, 345 (1992). ¹¹T. Toshizawa and H. Kandori, in <i>Progress in Retinal Research</i>, edited by
	tures of the isomerization of OT and the quantitative	¹² R. R. Birge, Biochim. Biophys. Acta 1016 , 293 (1990). $1^{3}C$ T_{2}
	paper with detailed discussion on the implication of these	(1992).
<u>, 1</u>		
ί τ	University gratefully acknowledge the support from the Inha University Research Fund and the Ministry of Education of	 ¹⁸J. A. Syage, P. M. Felker, and A. H. Zewail, J. Chem. Phys. 81, 4706 (1984). ¹⁹P. M. Felker and A. H. Zewail, J. Phys. Chem. 89, 5402 (1985).
·	of Japan. R.L.C. acknowledges the donors of the Petroleum	²¹ In the calculation, the degeneracy of the transition state is assumed to be f_{12} (see for the problem of the baseline of the formula
• 	ciety for partial support of this research.	Ref. 8. 22 The calculated and measured values are compared at 2200 cm ⁻¹ where the
	Saitama 350-03, Japan.	²³ M. Aoyagi, I. Ohmine, and B. E. Kohler, J. Phys. Chem. 94 , 3922 (1990).

.