
DC-SSAT: A Divide-and-Conquer Approach to
Solving Stochastic Satisfiability Problems Efficiently∗

Stephen M. Majercik
Department of Computer Science

Bowdoin College
Brunswick, ME, USA 04011
smajerci@bowdoin.edu

Byron Boots
Center for Cognitive Neuroscience

Duke University
Durham, NC, USA 27708

bboots@duke.edu

Abstract

We present DC-SSAT, a sound and complete divide-and-
conquer algorithm for solving stochastic satisfiability (SSAT)
problems that outperforms the best existing algorithm for solv-
ing such problems (ZANDER) by several orders of magnitude
with respect to both time and space. DC-SSAT achieves this
performance by dividing the SSAT problem into subproblems
based on the structure of the original instance, caching the vi-
able partial assignments (VPAs) generated by solving these
subproblems, and using these VPAs to construct the solution
to the original problem. DC-SSAT does not save redundant
VPAs and each VPA saved is necessary to construct the solu-
tion. Furthermore, DC-SSAT builds a solution that is already
human-comprehensible, allowing it to avoid the costly solu-
tion rebuilding phase in ZANDER. As a result, DC-SSAT is
able to solve problems using, typically, 1-2 orders of magni-
tude less space than ZANDER, allowing DC-SSAT to solve
problems ZANDER cannot solve due to space constraints.
And, in spite of its more parsimonious use of space, DC-
SSAT is typically 1-2 orders of magnitude faster than ZAN-
DER. We describe the DC-SSAT algorithm and present em-
pirical results comparing its performance to that of ZANDER
on a set of SSAT problems.

Introduction
Stochastic Boolean satisfiability (SSAT) (Papadimitriou
1985; Littman, Majercik, & Pitassi 2001) is a generalization
of satisfiability (SAT) that is similar to quantified Boolean
formulae (QBF). The ordered variables of the Boolean for-
mula in an SSAT problem, instead of being existentially or
universally quantified, are existentially or randomly quanti-
fied. Randomly quantified variables are true with a cer-
tain probability, and an SSAT instance is satisfiable with some
probability that depends on the ordering of and interplay be-
tween the existential and randomized variables. The goal is
to choose values for the existentially quantified variables that
maximize the probability of satisfying the formula.

Like QBF, SSAT is PSPACE-complete, so it is theoreti-
cally possible to transform many probabilistic planning and
reasoning problems of great practical interest into SSAT in-
stances (Littman, Majercik, & Pitassi 2001). While such
theoretically guaranteed translations are not always prac-
tical, previous work has shown that, in some cases, the

∗ Appears in the Proceedings of the Twentieth National Confer-
ence on Artificial Intelligence, pages 416-422, AAAI Press, 2005.
Copman,pyrigh





ables in Φ



problems Φi and Φi+1 will be some number of variables that



Problem Size Number of Steps =
(States in Statistic Number of ECs/SPs
Plan Prob) 5 t 50
COF NV 103 19t + 8 958
(256) NC 290 56t + 10 2810

AVSP 27.0 27.0 27.0
ACSP 58.0 ∼ 57 56.2

SPF NV 103 19t + 8 958
(256) NC 362 70t + 12 3512

AVSP 27.0 27.0 27.0
ACSP 72.4 ∼ 71 70.2

FAC NV 276 52t + 16 2616
(65536) NC 2007 397t + 22 19872

AVSP 68.0 68.0 68.0
ACSP 401.4 ∼ 399 397.4

LI10 NV 145 27t + 10 1360
(1024) NC 660 128t + 20 6420

AVSP 37.0 37.0 37.0
ACSP 132.0 ∼ 130 128.4

EX4 NV 59 11t + 4 554
(16) NC 178 34t + 8 1708

AVSP 15.0 15.0 15.0
ACSP 35.6 ∼ 35 34.2

NV=Num Vars, NC=Num Clauses, EC=Equiv Class,
SP=Subproblem, AVSP=Avg NV/SP, ACSP=Avg NC/SP

Table 1: Problem and decomposition characteristics.

ε2 = x1 agrees with α5, the VPA associated with ε5 = x2

and this solution (x1 = false, x2 = true) has a probabil-
ity of satisfaction of 0.48 (y1 must be false and y2 must be
true), so this is the optimal assignment.

Experimental Results
We tested DC-SSAT and ZANDER on a set of COPP-SSAT
problems adapted from Majercik & Littman (2003) (COF =
coffeebot, GOx = general-operations-x) and from (Hoey et
al. 1999) (FAC = factory, EX4 = exponential04, LI10 = lin-
ear10), and on one additional problem (SPF = spearfishing).
We omit problem descriptions, but provide information re-
garding problem size and the DC-SSAT decomposition of
each problem in Tables 1 and 2. Tables 3 and 4 describe
resource usage on problem instances of increasing size; the
better time/space usage in each case is indicated in bold face.
Reported results are representative of all results obtained. All
tests were run on a Power Mac G5 with dual 2.5 GHz CPUs, 2
GB RAM, 512KB L2 cache/CPU, running Mac OS X 10.3.8.
We omit probabilities of satisfaction due to lack of space.

In the COF problem, DC-SSAT is 1-2 orders of magnitude
faster and uses 1-2 orders of magnitude less space (Table 3).
In the largest COF problem that ZANDER was able to solve
before exhausting memory (the 110-step problem, not shown,
with 2098 variables and 6170 clauses), ZANDER required
43.61 CPU seconds and used 1411.32 MB of memory, while
DC-SSAT was able to solve the problem in 0.35 CPU second
using 25.12 MB of memory, 2 orders of magnitude faster and

Problem Size Number of Steps =
(States in Statistic Number of ECs
Plan Prob) 5 t 50
GO6 NV 107 20t + 7 1007
(128) NC 374 72t + 14 3614

AVSP 27.0 27.0 27.0
ACSP 74.8 ∼ 73 72.3

GO7 NV 123 23t + 8 1158
(256) NC 451 87t + 16 4366

AVSP 31.0 31.0 31.0
ACSP 90.2 ∼ 88 87.3

GO8 NV 139 26t + 9 1309
(512) NC 533 103t + 18 5168

AVSP 35.0 35.0 35.0
ACSP 106.6 ∼ 104 103.4

GO9 NV 155 29t + 10 1460
(1024) NC 620 120t + 20 6020

AVSP 39.0 39.0 39.0
ACSP 124.0 ∼ 121 120.4

NV=Num Vars, NC=Num Clauses, EC=Equiv Class,
SP=Subproblem, AVSP=Avg NV/SP, ACSP=Avg NC/SP

Table 2: Problem and decomposition characteristics.

using 2 orders of magnitude less space.
Table 3 shows that, in most cases, ZANDER exhausted

memory on the SPF problem and was timed out after 20 min-
utes on the FAC problem (which provided the largest SSAT
instances in our test set; see Table 1). In the 10-step SPF
problem, the one problem that both solvers completed that
had a non-zero probability of satisfaction, the difference is
dramatic: DC-SSAT was 3 orders of magnitude faster and
used 2 orders of magnitude less space. Although ZANDER
frequently uses much of the time and space it consumes to
rebuild its solution tree, this was not the case in SPF and
FAC, where the resources were consumed mostly in the so-
lution calculation phase. We argue below that this is due to
the larger number of actions (which increases the size of the
existential blocks) in SPF (6 actions) and FAC (14 actions)
compared to COF (4 actions).

Neither the SSAT problem size nor the size of the subprob-
lems in the DC-SSAT decomposition seems to be a reliable
indicator of DC-SSAT’s performance; e.g. the 50-step FAC
problem is approximately 2-3 times larger than the 50-step
LI10 problem on all size statistics (Table 1), but DC-SSAT’s
solution time for that FAC problem was approximately 1

4 its
solution time for the LI10 problem. LI10 (like EX4) is an ar-
tificial problem; together, they shed some light on this issue
and on the generally extreme differences between the per-
formances of DC-SSAT and ZANDER. The LI10 problem
requires a number of time steps (existential blocks) that is
linear in the number of variables in each of these blocks in
order to obtain a nonzero probability of satisfaction, although
the actions must be executed in just the right order. Aided by
unit propagation, ZANDER quickly establishes the correct
sequence of actions, starting with the final action and work-
ing its way back to the initial action (although ZANDER



Prob- Sol- Re- Resource Usage by Number of Steps in Plan
lem ver source 5 10 15 20 25 30 35 40 45 50
COF DC CS 0.02 0.02 0.03 0.04 0.07 0.07 0.08 0.12 0.12 0.14

MB 0.04 0.27 0.63 1.08 1.63 2.27 3.01 3.84 4.64 5.65
ZA CS 0.06 0.03 0.07 0.25 0.84 2.19 3.85 5.62 7.53 9.48

MB 0.00 0.14 1.55 9.46 38.78 111.59 192.60 273.65 354.72 435.83
SPF DC CS 0.01 0.03 0.06 0.08 0.11 0.13 0.17 0.20 0.22 0.25

MB 0.07 0.48 1.07 1.80 2.70 3.74 4.94 6.30 7.59 9.23
ZA CS 0.02 29.87 – – – – – – – –

MB 0.01 28.69 M M M M M M M M
FAC DC CS 0.17 2.65 7.81 14.26 19.95 26.01 30.51 37.20 43.36 50.80

MB 0.70 16.44 50.47 100.27 162.08 237.36 326.11 428.33 544.02 673.18
ZA CS 3.47 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+

MB 0.99 – – – – – – – – –
LI10 DC CS 0.11 8.71 25.12 44.55 66.94 92.01 119.16 146.81 178.58 205.37

MB 1.20 24.53 66.75 126.72 196.84 280.08 376.46 497.12 621.39 758.78
ZA CS 0.02 0.02 0.47 2.60 7.60 24.83 – – – –

MB 0.00 0.00 3.83 37.48 206.83 1002.53 M M M M
EX4 DC CS 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.06 0.06

MB 0.01 0.07 0.19 0.37 0.56 0.81 1.09 1.35 1.70 2.08
ZA CS 0.00 0.03 39.89 201.93 291.22 355.95 1200+ 1200+ 1200+ 1200+

MB 0.00 0.00 0.00 0.04 0.27 0.99 – – – –
DC=DC-SSAT, ZA=ZANDER, CS=CPU secs, MB=MB mem, 1200+=Timed out, M=Mem exhausted, 0.00=Rounding

1200+



Prob- Sol- Re- Resource Usage by Number of Steps in Plan
lem ver source 5 10 15 20 25 30 35 40 45 50
GO6 DC CS 0.03 0.11 0.22 0.34 0.43 0.53 0.68 0.76 0.84 0.96

MB 0.31 2.44 5.43 9.22 13.78 19.13 26.07 33.12 40.95 49.56
ZA CS 0.07 0.65 0.73 1.17 2.95 9.08 26.28 – – –

MB 0.04 0.77 3.25 20.75 104.82 402.50 1254.17 M M M
GO7 DC CS 0.05 0.29 0.57 0.87 1.21 1.57 1.99 2.46 2.95 3.46

MB 0.49 5.38 13.05 22.22 34.37 47.42 64.06 83.09 102.12 125.64
ZA CS 0.14 12.81 13.42 15.30 21.03 45.04 – – – –

MB 0.06 9.34 13.41 51.00 293.12 1379.37 M M M M
GO8 DC CS 0.06 1.02 2.54 4.59 7.11 10.24 13.70 17.87 20.71 23.60

MB 0.81 11.54 29.20 52.23 80.65 114.44 153.61 198.16 248.09 303.40
ZA CS 0.18 368.04 393.09 427.61 451.85 1200+ 1200+ 1200+ 1200+ 1200+

MB 0.09 228.36 234.54 301.16 878.43 – – – – –
GO9 DC CS 0.10 6.73 20.85 35.97 55.11 76.22 100.63 122.56 141.97 162.15

MB 1.18 24.07 64.16 120.40 185.86 270.46 370.00 474.25 602.14 731.77
ZA CS 0.26 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+ 1200+

MB 0.00 – – – – – – – – –
DC=DC-SSAT, ZA=ZANDER, CS=CPU secs, MB=MB mem, 1200+=Timed out, M=Mem exhausted, 0.00=Rounding

Table 4: ZANDER’s performance deteriorates significantly as the number of actions in the GOx problems increases.

structure of a COPP-SSAT problem ensures that all the sub-
problems, except for the first and last ones, are isomorphic, it
might be possible to use the solution from the first of these to
extend the time horizon of the overall solution/plan an arbi-
trary number of steps at very little incremental cost, produc-
ing a planner that is able to solve very large problems effi-
ciently. We plan to implement this idea and test DC-SSAT
against other probabilistic planning techniques. Also, in a
future paper, we will show how DC-SSAT can be extended
to partially observable probabilistic planning problems and
to general SSAT problems. One difficulty here is that a VPA
in subproblem Φi may contain variables that are also in sub-
problem Φj , j > i + 1; hence, checking VPA compatibility
only between adjacent subproblems is no longer sufficient.
One consequence is that the depth-first search that calculates
P r[Φ] must maintain a list of VPAs that contain variables in
later subproblems so that compatibility between non-adjacent
subproblems can be checked as needed.

There are other interesting directions for further work. In
the case of general SSAT problems, can we characterize when
the DC-SSAT approach will be beneficial? It will fail if all
the existential variables are related and form a single equiv-
alence class, but what is the impact of the connection topol-
ogy in general? Variables that are far apart in the prefix, but
share a clause, may induce the solver to explore a long, un-
productive path. Assignment compatibility issues that were
local in a COPP-SSAT problem become global in the general
case. Walsh (2001) investigated the impact of the connection
topologies of graphs associated with real-world search prob-
lems and related this to the notion of a backbone (variables
that have the same value in all solutions). What role do these
notions play in SSAT problems?

Finally, although QBF problems do not require a solver to
consider all possible satisfying assignments, SSAT



Walsh, T. 2001. Search on high degree graphs. In IJCAI-01,
266–274.


