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representation (each path through each decision tree is re-
placed by a PPL statement) but PPL allows the user to
express planning problems in a more natural, flexible, and
compact format. More importantly, PPL gives the user the
opportunity (but does not require them) to easily express
state invariants, equivalences, irreversible conditions, and
action preconditions—information that can greatly decrease
the time required to find a solution.

ZANDER converts the PPL representation of the prob-
lem into a stochastic satisfiability (SSAT) problem. An
SSAT problem is a satisfiability (SAT) problem, assumed
to be in conjunctive normal form, with two types of
Boolean variables—termed choice variables and chance
variables (Majercik 2000)—and an ordering specified for
the variables. A choice variable is like a variable in a reg-
ular SAT problem; its truth value can be set by the plan-
ning agent. Each chance variable, on the other hand, has an
independent probability associated with it that specifies the
probability that that variable will be True.

Choice variables can be thought of as being existentially
quantified—we must pick a single, best value for such a
variable—while chance variables can be thought of as “ran-
domly” quantified—they introduce uncontrollable random
variation which, in general, makes it more difficult to find
a satisfying assignment. So, for example, an SSAT formula
with the ordering ∃v

R

w∃x

R

y∃z asks for values of v, x (as
a function of w), and z (as a function of w and y) that max-
imize the probability of satisfaction given the independent
probabilities associated with w and y. This dependence of
choice variable values on the earlier chance variable values
in the ordering allows ZANDER to map contingent planning
problems to stochastic satisfiability. Essentially, ZANDER
must find an assignment tree that specifies the optimal ac-
tion choice-variable assignment given all possible settings
of the observation variables (Majercik 2000).

The solver does a depth-first search of the tree of all pos-
sible truth assignments, constructing a solution subtree by
calculating, for each variable node, the probability of a sat-
isfying assignment given the partial assignment so far. For a
choice variable, this is the maximum probability of its chil-
dren. For a chance variable, the probability will be the prob-
ability weighted average of the success probabilities for that
node’s children. The solver finds the optimal plan by deter-
mining the subtree that yields the highest probability at the
root node.

ZANDER uses unit propagation (assigning a variable in a
unit clause—a clause with a single literal—its forced value)
and, to a much lesser extent, pure variable assignment (as-
signing the appropriate truth value to a choice variable that
appears only positively or only negatively) to prune subtrees
in this search. Also, although the order in which variables
are considered is constrained by the SSAT-imposed vari-
able ordering, where there is block of similar (choice or
chance) variables with no imposed ordering, ZANDER con-
siders those with the earliest time index first. This time-
ordered heuristic takes advantage of the temporal structure
of the clauses induced by the planning problem to produce
more unit clauses. ZANDER also uses dynamically calcu-
lated success probability thresholds to prune branches of the

tree. We are currently working on incorporating learning to
improve ZANDER’s performance.

SSAT Encodings
The SSAT encoding currently used by ZANDER—a linear
action encoding with classical frame axioms—and two of
the alternate encodings described below—a linear action en-
coding with simple explanatory frame axioms and a parallel-
action encoding—are similar to deterministic plan encod-
ings described by Kautz, McAllester, & Selman (1996). A
third encoding—a linear action encoding with complex ex-
planatory frame axioms—contains elements of these two al-
ternate encodings and arises due to the probabilistic actions
in our domains.

In all cases, variables are created to record the status of ac-
tions and propositions in a T -step plan by taking three cross
products: actions and times 1 through T , propositions and
times 0 through T , and random propositions and times 1
through T . Let A, P , O, and R be the sets of actions, state
propositions, observation propositions, and random proposi-
tions, respectively, and let A = |A|, P = |P |, O = |O|, and
R = |R|. Let V be the set of variables in the CNF formula.
Then:

|V | = (A + P + O + R)T + P (1)

The variables generated by all but the random propositions
are choice variables. Those generated by the random propo-
sitions are chance variables. Each variable indicates the sta-
tus of an action, proposition, observation, or random propo-
sition at a particular time. In the parallel-action encoding,
two additional actions are produced for each proposition
p ∈ P at each time: a maintain-p-positively action and a
maintain-p-negatively action, which increases the number
of variables in this encoding by 2P .

Conceptually, we need clauses that enforce initial/goal
conditions and clauses that model actions and their effects.
The second group divides into two subgroups: clauses that
enforce (or not) a linear action encoding, and clauses that
model the impact of actions on propositions. Finally, in this
last subgroup, we need clauses that model the effects of ac-
tions both when they change the value of a proposition and
when they leave the value of a proposition unchanged (the
frame problem). In the following sections, we will describe
the clauses in each encoding that fulfill these functions.

Linear Action Encoding With
Classical Frame Axioms
Initial and Goal Conditions: Let IC+ ⊆ P (IC− ⊆ P ) be
the set of propositions that are True/False in the initial
state, and GC+ ⊆ P (GC− ⊆ P ) be the set of propositions
that are True/False in the goal state, where IC+ ∩ IC− = ∅
and GC+ ∩ GC− = ∅. This generates O(P) unit clauses:∧

p∈IC+

(p0) ∧
∧

p∈IC−
(p0) ∧

∧
p∈GC+

(pT ) ∧
∧

p∈GC−
(pT ) (2)

where superscripts indicate times.
Mutual Exclusivity of Actions: Special clauses marked

as “exactly-one-of” clauses specify that exactly one of the



literals in the clause be True and provide an efficient way
of encoding mutual exclusivity of actions. A straightfor-
ward propositional encoding of mutual exclusivity of n ac-
tions would require, for each time t, an action disjunction
clause stating that one of the actions must be True, and(

n
2

)
= O(n2) clauses stating that for each possible pair

of actions, one of the actions must be False. In subse-
quent solution efforts, the assignment of True to any ac-
tion would force the assignment of False to all the other
actions at that time step, but at a cost of discovering and
propagating the effect of the O(n) resulting unit clauses.
Depending on the implementation of the SSAT solver, the
number of mutual exclusivity clauses could also slow the
discovery of unit clauses. By tagging the action disjunction
clause as an exactly-one-of-clause, we reduce the total num-



If one considers the case in which every proposition and
observation is unaffected by every action, then the upper-
bound on the number of classical frame axioms generated in
this encoding is O(T A(O + P)) = O(T AP).

Linear Action Encoding With
Simple Explanatory Frame Axioms
Clauses for initial and goal conditions, mutual exclusivity
of actions, and action effects remain the same as for linear
action encodings with classical frame axioms. But, since
actions typically affect only a relatively small number of



Parallel Action Encoding
The final encoding seeks to increase the efficiency of the
encoding by allowing parallel actions. Such encodings are
attractive in that, by allowing for the possibility of execut-
ing actions in parallel, the length of a plan with the same
probability of success can potentially be reduced, thereby
reducing the solution time. For example, PGRAPHPLAN and
TGRAPHPLAN (Blum & Langford 1999) allow parallel ac-
tions in probabilistic domains. PGRAPHPLAN and TGRAPH-
PLAN operate in the Markov decision process framework;
although actions have probabilistic effects, the initial state
and all subsequent states are completely known to the agent
(unlike ZANDER, which can handle partially observable do-
mains).

PGRAPHPLAN does forward dynamic programming us-
ing the planning graph as an aid in pruning search. ZAN-
DER essentially does the same thing by following the ac-
tion/observation variable ordering specified in the SSAT
problem. When ZANDER instantiates an action, the resulting
simplified formula implicitly describes the possible states
that the agent could reach after this action has been executed.
If the action is probabilistic, the resulting subformula (and
the chance variables in that subformula) encode a probabil-
ity distribution over the possible states that could result from
taking that action. And the algorithm is called recursively to
generate a new implicit probability distribution every time
an action is instantiated.

TGRAPHPLAN is an anytime algorithm that finds an opti-
mistic trajectory (the highest probability sequence of states
and actions leading from the initial state to a goal state), and
then recursively improves this initial trajectory by finding
unexpected states encountered on this trajectory (through
simulation) and addressing these by finding optimistic tra-
jectories from these states to a goal state. In this sense,
TGRAPHPLAN is more like APROPOS2 (Majercik 2002),
an anytime approximation algorithm based on ZANDER.

Clauses for initial and goal conditions remain the same.
This encoding, however, does not include the action ef-
fects clauses or frame axioms common to the first three
encodings. Instead, it works backward from the goal,
in the manner of TGRAPHPLAN to generate proposition-
production clauses enforcing the fact that propositions im-
ply the disjunction of all possible actions that could produce
that proposition, and clauses enforcing the fact that actions
imply their preconditions. This process is complicated by
the probabilistic nature of the domains, as we will explain in
more detail below.

Note that this encoding requires the addition of a set of
maintain actions, since one way of obtaining a proposition
with a particular truth value is by maintaining the value of
that proposition if it already has that value. Thus, the ac-
tion set of this encoding (and the number of variables) is
not strictly comparable to those of the previous encodings.
These maintain actions imply, as a precondition, the propo-
sition they maintain. These maintain-precondition clauses,
along with the proposition-production clauses, implicitly
provide the necessary frame axioms, since resolving a
maintain-precondition clause with a proposition-production
clause containing the maintain will produce a frame axiom.

For example, the maintain-precondition clause:

maintain-painted-positivelyt ∨ paintedt−1 (19)

and the proposition-production clause:

paintedt ∨ (paintt ∧ cvt
π) ∨ maintain-painted-positivelyt (20)

resolve to produce:

paintedt ∨ paintedt−1 ∨ (paintt ∧ cvt
p) (21)

which readily translates to the explanatory frame axiom:

paintedt ∧ paintedt−1 → (paintt ∧ cvt
π) (22)

Finally, now that we can take more than one action at a
time we need clauses that specifically forbid the simultane-
ous execution of conflicting actions: Unlike TGRAPHPLAN,
however, which makes two actions exclusive if any pair of
outcomes interfere, the parallel action encoding we have de-
veloped for ZANDER makes two actions exclusive only un-
der the circumstances in which they produce conflicting out-
comes, as we will describe below.

Preconditions: Preconditions in the probabilistic setting
are not as clear-cut as in the deterministic case. We will
divide preconditions into two types. A hard precondition of
an action is a precondition without which the action has no
effect on any proposition under any circumstances. Let H+

a
be the set of hard preconditions for action a that must be
True and H−

a the set of hard preconditions for action a that
must be False. Then O(T AP) clauses are generated:

T∧
t=1

∧
a∈A

∧
h∈H+

a

(a ht−1) ∧

T∧
t=1

∧
a∈A

∧
h∈H−a

( a h� 1 (23)

Soft preconditions—action preconditions that are not hard
but whose value affects the impact of that action—are mod-
eled in the next set of clauses.

Proposition-Production Clauses: In these clauses, a
proposition p implies the conjunction of all those actions
(and the soft preconditions necessary for that action to pro-
duce p) that could have produced p.

This set of clauses is quite similar to the complex
explanatory axioms, but, instead of providing explanations
for changes in the status of a proposition, they provide expla-
nations for the current status of the proposition. This leads
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and how propositions can become False (replace pt−1

with pt−1). An example may help clarify the type of clauses
produced and the use of the maintain action:

p8 → (a4 ∧ p3 ∧ p7 ∧ cv5) ∨
(a5 ∧ p8 ∧ p12 ∧ p15 ∧ cv11) ∨
(maintain-p8-negatively)

This set of clauses describes the possible ways that p8 can
be produced. Of course, one of the actions that can produce
a given proposition with a given truth value will always be
the maintain action for that proposition and truth value.

Conflicting Actions: The absence of action effects
clauses and the possibility of different outcomes of actions
depending on the circumstances also means that clauses
modeling action conflicts are somewhat more complex.
Since actions can have very different effects on a proposi-
tion depending on the circumstances, actions can be con-
flicting under some sets of circumstances but not others and
this must be incorporated into the action conflict clauses.
For example, paint and maintain-error-negatively are con-
flicting if the object is already painted, but not otherwise,
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Figure 2: S-EXP and C-EXP encodings are the most efficient
linear-action encodings; times shown here for the BASIC GO-
4 domain.

GO-4, and GO-5 domains, and this advantage increases with
domain size. This is not surprising since, in any GO domain,
all actions that have not had their intended effect can be done
in parallel at any time step, and a larger number of actions
translates directly into a greater benefit from parallelism.
The increase in the number of variables and clauses—about
75% more variables and about 50-300% more clauses than
the other encodings—is more than offset by the reduction
in time steps necessary to achieve the same probability of
success. Even in the GO-2 domain, the 5-step parallel plan
produced by the P-ACT encoding succeeds with probability
0.938 and is found in 0.21 CPU second, compared to the 7-
step linear-action plan produced by the linear-action encod-
ings that succeeds with the same probability and is found in
0.11 to 0.26 CPU second. In the GO-5 domain, the 3-step
and 4-step parallel-action plans produced by the P-ACT en-
coding succeed with a much higher probability (0.513 and
0.724 respectively) than the best plan produced by a linear-
action encoding (0.363 for an 8-step plan), and the 3-step
parallel-action plan solution time is an order of magnitude
less than the best 8-step linear-action plan solution time (two
orders of magnitude better than the 8-step CLASS encoding).
The 2-step parallel-action plan succeeds with a probability
of 0.237, which is slightly better than the success probabil-
ity of the 7-step linear-action plan, and the 2-step parallel-
action plan solution time is three orders of magnitude less
than the 7-step linear-action plan solution times.

Adding Domain-Specific Knowledge
Not surprisingly, the addition of domain-specific knowledge
(DSPEC encodings) significantly speeds up the solution pro-
cess by making useful information explicit and, thus, more
readily available to the solver. Kautz & Selman (1998)
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Figure 3: CLASS encodings become more competitive when
domain-specific knowledge is added.

have explored the possibility of exploiting domain knowl-
edge in deterministic-planning-as-satisfiability. In our test
problems, we added knowledge of irreversible conditions:
any fluent that is True (e.g. painted, cleaned, polished, or
error in the GO-3 domain) at time t is necessarily True
at time t + 1. This added knowledge is relatively mini-
mal, adding one clause per fluent per time step. Yet, the
addition of such clauses reduces the solution time by ap-
proximately 50-65% in some cases. The additional knowl-
edge does nothing to improve the running time of the S-
EXP or C-EXP encodings, since these encodings, by virtue
of their explanatory frame axioms, already include clauses
that model the persistence of positive propositions if there
is no action that can negate them. In fact, the addition of
these superfluous clauses frequently increases the running
time of the S-EXP and C-EXP encodings. This is apparent in
Figure 3 and Table 2(a), where, although the solution times
for the S-EXP and C-EXP encodings are slightly worse, the
CLASS encodings have become somewhat more competitive.

The benefit of adding domain-specific knowledge will
certainly vary across domains and, in any case, the ease of
adding such knowledge is critical. As mentioned earlier,
various types of domain-specific knowledge can easily be
added by the user in the form of PPL statements, but we
are currently developing a domain analyzer that will auto-
matically extract such information from the user’s domain
specification. In addition, the analyzer will also be able to
extract temporal constraints implicit in the domain specifi-
cation. Given the success of temporal-logic-based planners
in recent AIPS planning competitions, we expect that the
addition of such knowledge will improve performance con-
siderably.





Further Work
Even more efficient SSAT encodings like the S-EXP encod-
ing contain clauses that are superfluous since they some-
times describe the effects of an action that cannot be taken
at a particular time step (or will have no impact if executed).
We are currently working on an approach that is analogous
to the GRAPHPLAN (Blum & Langford 1999) approach of
incrementally extending the depth of the planning graph in
the search for a successful plan. We propose to build the
SSAT encoding incrementally, attempting to find a satisfac-
tory plan in t time steps (starting with t = 1) and, if un-
successful, using the knowledge of what state we could be
in after time t to guide the construction of the SSAT encod-
ing for the next time step. This reachability analysis would
not only prevent superfluous clauses from being generated,
but would also make it unnecessary to pick a plan length for
the encoding, and would give the planner an anytime capa-
bility, producing a plan that succeeds with some probability
as soon as possible and increasing the plan’s probability of
success as time permits.

There are two other possibilities for alternate SSAT en-
codings that are more speculative. Most solution techniques
for partially observable Markov decision processes derive
their power from a value function—a mapping from states
to values that measures how “good” it is for an agent to
be in each possible state. Perhaps it would be possible to
develop a value-based encoding for ZANDER. If such an
encoding could be used to perform value approximation, it
would be particularly useful in the effort to scale up to much
larger domains. The second possibility borrows a concept
from belief networks to address the difficulty faced by an
agent who must decide which of a battery of possible ob-
servations is actually relevant to the current situation. D-
separation (Cowell 1999) is a graph-theoretic criterion for
reading independence statements from a belief net. Perhaps
there is some way to encode the notion of d-separation in
an SSAT plan encoding in order to allow the planner to de-
termine which observations are relevant under what circum-
stances.
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