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FIG. 3. (a) The clone size values (mean 6 1 SE) for the Mokelumne (n 5 18) and Cosumnes (n 5 17) Rivers. (b) The
sample square values (mean 6 1 SE) for clones (open bars) and small genets (gray bars) by river. Significant differences
within rivers are marked above relevant bars (*P , 0.05; **P , 0.0005). ‘‘BA’’ denotes basal area.

At three of our six sites, all genotypes were identified
as closely related (siblings), at two sites only a single
genotype was identified as non-sibling, and at one site
five genotypes were identified as non-siblings. There-
fore, it appears that on each site there is a single family
contributing almost all of the seedlings recruited into
the populations. Salix exigua genets stagger their dis-
persal timing (V. Douhovnikoff, personal observation).
The parent releasing seeds onto the newly exposed sub-
strate after a stand-clearing flood at the ideal time for
germination and survival will likely have the greatest
chance of reproductive success.

Seedlings from other parents may establish them-
selves at other times, but as Eriksson (1993) points out,
there is an advantage to being ‘‘first at site’’ such as a
greater success in the capture of space and resources
(Kays and Harper 1974, Lolium perenne), and those
few seedlings contributed later by other parents are
more likely to be lost from the population (Hartnett
and Bazzaz 1985, Solidago canadensis; Dorken and
Eckert 2001, Decodon verticillatus). At all sites, non-
sibling genets were from small genet plots, but every
clone identified was a sibling of all other clones on its
site. Thus, the familial cohort (same family and age
class) is dominating the site. This evidence of a single
contributing family and dominance by the initial cohort
suggests a recruitment pattern of initial seedling re-
cruitment (ISR; Eriksson 1993).

It is unlikely that seedling recruitment into the ma-
ture willow population is very common. For the best

chance of survival past the first year, seedlings must
germinate in those rare areas that are both close enough
to the stream for adequate water (Niiyama 1990, Salix
sp.), and yet somehow protected from intense scouring
in periods of high flows (Mahoney and Rood 1998). In
addition to drought stress and scouring other common
sources of seedling mortality include herbivory, com-
petition, and pathogens. In this study, first year seedling
mortality was 100% on all six study sites for two con-
secutive years. These observations were consistent
with several other studies that also found first year
mortality of willow and cottonwood seedlings at or near
100% (McBride and Strahan 1984, Barnes 1985, Brad-
ley and Smith 1986, Sacchi and Price 1992, Stromberg
et al. 1993, Mahoney and Rood 1998, Johnson 2000).
As a result, seedling recruitment alone appears to be
insufficient to explain willow success. It is difficult to
study the demographics of this species. There is no
practical means to age clones due to, among other rea-
sons, difficulty in identifying the original ramet, and
seedling mortality is so high that it is rare to observe
recruitment. However, these data suggest an ability to
grow clonally makes it possible for a limited number
of successful seedlings to eventually colonize a rela-
tively large area. Thousands of seeds might result in
hundreds of seedlings, which would then result in pro-
gressively fewer mature genets made up of more and
more ramets. Building on Mahoney and Rood’s re-
cruitment box model, we propose a model for future
testing whereby prolific clonal growth allows for the
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initiated resulting in larger stems with denser canopies
released from the constraints of regular disturbances.
It is likely, that in order to reestablish an equilibrium
whereby willows are constrained and maintained by
regular disturbances, more than just a return to histor-
ical flood intervals will be necessary, such as an ex-
tremely large stand replacing flood. In the absence of
this, we predict the increase in site dominance by large
clones, a reduction in genotypic diversity and site het-
erogeneity, and that over time willow clones will be
replaced by taller stemmed and more shade tolerant
species (Strahan 1981, Boggs and Weaver 1994,
McLeod et al. 2001, Spencer et al. 2001). Therefore,
in the short term willow densities and clone size may
increase, but in the long term the willow component
of these riparian zones will be significantly diminished.

Traditionally riparian restoration has focused on
planting and creating conditions for seedling and cut-
ting survival (Friedman et al. 1995). However, an un-
derstanding of how to maximize potential clonal
growth may lead to greater restoration success rates.
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